Molecular Analysis in the Pacritinib Dose-Finding PAC203 Study in Patients with Myelofibrosis Refractory or Intolerant to Ruxolitinib

Jennifer O'Sullivan1,2, Jason Taylor3, Aaron Gerds4, Sarah A. Buckley5, Claire Harrison1, Stephen Oh6, Kieran Howard4, Helene Dreaud7, Angela Hamblin8, Adam J Mead9

1Department of Haematology, Guy's and St Thomas' NHS Foundation Trust; 2Hematology, St George's University of London; 3Division of Medicine, St James's University Hospital, Leeds, UK; 4Department of Haematology and Medical Oncology, Taney Research Institute, Chicago, IL, USA; 5Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 6Department of Haematology, Addenbrooke's Hospital, Cambridge, UK; 7Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 8Charing Cross Hospital, London, UK; 9London Clinical Trials Centre, Imperial College Healthcare NHS Trust, London, UK.

BACKGROUND

Myelofibrosis (MF) After Ruxolitinib Discontinuation

- Survival after ruxolitinib discontinuation is poor, particularly for patients with thrombocytopenia (median <1 year) and for patients who acquired new mutations on ruxolitinib (6 months).

Molecular Risk in Myelofibrosis

- Mutation type and number has prognostic significance in patients with MF. Patients with ≥3 total mutations have shorter survival and a decreased spleen volume response (SVR) with ruxolitinib, and shorter time to treatment discontinuation.2
- Prior cohorts suggest that the frequency of ruxolitinib-treated patients harboring ≥3 non-driver mutations is 8.7%.3

Pacritinib in Myelofibrosis

- Pacritinib is an oral JAK2/IRAK1 inhibitor4 that has demonstrated clinical efficacy in two Phase 3 MF trials (PERSIST-1 and PERSIST-2)4,5 and in PAC203, a dose-finding trial in patients who failed to benefit from or were intolerant of ruxolitinib.6
- These studies included patients with severe thrombocytopenia.
- The mutational landscape of the PAC203 "post-ruxolitinib" patient population has not well characterized.

Study Objectives

- To describe the mutational landscape of MF patients after failure of ruxolitinib therapy, including those with severe thrombocytopenia, and to correlate mutational findings with baseline patient characteristics and clinical outcomes (including ≥35% spleen volume reduction and development of grade 3/4 cytopenias).

METHODS

- Baseline mutational analysis was performed on patients enrolled on PAC203.
- Mutational data was obtained in 110 (of 164 recruited; 161 treated) patients using an ISO accredited Illumina TruSeq Custom Amplicon Panel, including 32-gene mutation hotspots and exons (~36,000 bp, 287 ampiclons): ASXL1, ATRX, DNMT3A, EZH2, TET2, CEBPA, ETV6, NPM1, PHF6, RUNX1, SETBP1, SF3B1, SRSF2, TP53, U2AF1, WT1, ZRSR2, CBL, CBLB, CBLC, CSF3R, FLT3, HRAAS, JAK2, KIT, KRAS, MPL, NRPAS, PDGFRA, PTEN, IDH1, IDH2.
- Pathogenic variants were reported at a variant allele frequency (VAF) of ≥1%.
- CALR mutation screening was carried out independently.

RESULTS

- PAC203 patients with available molecular data had a high incidence of anemia and severe thrombocytopenia (platelet counts <50 x 10^9/L).

Table 1. Baseline Patient Characteristics (Subset with DNA Sequencing Available)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients (N=110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up time (median, range)</td>
<td>163 (28-476) days</td>
</tr>
<tr>
<td>Age (median, range)</td>
<td>67.5 (37-87) years</td>
</tr>
<tr>
<td>Primary M (%)</td>
<td>56.4%</td>
</tr>
<tr>
<td>Platelet count (median, range)</td>
<td>63 (13 – 910) x 10^9/L</td>
</tr>
<tr>
<td>Platelet count <50 x 10^9/L (%)</td>
<td>38.3%</td>
</tr>
<tr>
<td>Hemoglobin <10 g/dL (%)</td>
<td>65.1%</td>
</tr>
</tbody>
</table>

Molecular Landscape: MF Post-Ruxolitinib

- The most common driver mutation was JAK2 (77.3%), whereas 1.8% had no driver mutation ("triple negative"), as shown in Figure 1.
- CALR mutation, associated with better prognosis in MF, was relatively rare in this population (12.7%) compared to other previously described MF populations.9
- Non-MF driver mutations (NMD) were present in 76.4% of patients; 43.6% had ≥2 NMD and 18% had ≥3 NMD.
- ASXL1 (25.5%) and TET2 (24.5%) were most prevalent, consistent with prior reports.10
- Splicing factor (SF) mutations, present in 32.3%, were mutually exclusive (SF3B1, n=14; U2AF1, n=14; SRSF2, n=6; ZRSR2, n=2).
- Patients with ≥3 total mutations have shorter survival, decreased spleen volume, and development of grade 3/4 cytopenias.
- Patients with RAS pathway mutations were more likely to have grade 3/4 anemia on study (OR 4.4 [95% CI 1.3-14.8], Figure 3).
- Patients with RAS pathway mutations were more likely to have grade 3/4 thrombocytopenia on study (OR 4.7 [95% CI 1.6-13.9], Figure 3).
- Mutations associated with poor survival in MF (n=5), HMR: IDH1/2, EZH2, ASXL1, SRSF2, U2AF1(Q157).13
- TP53 mutations, associated with poor prognosis and leukemic transformation12 were found in 7.3% of patients.
- RAS mutations (K/NRAS), associated with poor survival in MF, were found at a higher frequency (17.3%) than reported in prior MF cohorts.
- Patients with a RAS mutation (vs. wild type) were more likely to be HMR (68.4% vs. 35.6%, P=.007).
- RAS mutations and TP53 mutations were mutually exclusive.

Longitudinal Outcomes

- Of patients with Week 24 molecular analysis, 13.2% (3/58) acquired at least 1 new mutation. Allele frequency was 5% in all cases.
- ASXL1 (n=3), TET2 (n=1), TP53 (n=1), CBL (n=1), PHF6 (n=1)
- A statistically significant association was not observed between baseline mutation status and efficacy outcomes or treatment discontinuation.

CONCLUSIONS

- The PAC203 cohort is molecularly high risk
- High incidence of HMR, TP53, and RAS mutations
- High mutational burden3
- Low incidence of CALR mutations
- The molecular characteristics of the PAC203 cohort may impact overall response on this study
- Lack of association between mutations and response rate on PAC203 noted but significant inferences cannot be made due to low event rate
- Novel associations between mutation profiles and hematologic parameters and events were identified

REFERENCES

Figure 1. Balloon Plot Showing Relationship Between Driver and Non-Driver Mutations

Figure 2. Mutations Associated with Cytopenias

Figure 3. High Grade Cytopenia Events by Mutation Group