The Oral JAK2/IRAK1 Inhibitor Pacritinib Demonstrates Spleen Volume Reduction in Myelofibrosis Patients Independent of JAK2 V617F Allele Burden

Srdan Verstovsek, Bart L. Scott, Jason A. Taylor, John O. Mascarenhas

BACKGROUND

JAK2 Allele Burden in Myelofibrosis

- In patients with primary JAK2-mutated MF, lower JAK2 allele burden is associated with poor prognosis and poor response to treatment.1-3
- Patients with low allele burden (variant allele frequency <50%) have:
 - More anemia and leukopenia
 - Shorter overall survival
 - 5.5-fold lower chance of achieving a spleen volume response (SVR) with ruxolitinib
- Patients with low JAK2 allele burden represent an area of unmet medical need as they are high-risk and underserved by available therapies.

Pacritinib as Therapy for Myelofibrosis

- Pacritinib is an oral JAK2/IRAK1 inhibitor4
- Unlike other JAK2 inhibitors, pacritinib does not inhibit JAK1 in an independent mechanism (e.g., through inhibition of IRAK1).

METHODS

- A retrospective analysis of PERSIST-1 and PERSIST-2 was performed in which outcomes were stratified by JAK2 V617F mutation status and allele burden.
- Baseline JAK2 V617F was quantified by PCR, and variant allele frequencies were binned by quartile.
- The efficacy endpoint was the percentage of patients achieving ≥35% SVR (by MRI or CT scan) at Week 24 based on an intention-to-treat analysis.
- Analysis was based on pooled results across the two studies for patients treated with pacritinib and those treated with BAT.

RESULTS

Table 1: Baseline Characteristics by JAK2 Mutation Status and Allele Burden

<table>
<thead>
<tr>
<th>JAK2 V617F</th>
<th>N=327</th>
<th>Allele burden <50% N=256</th>
<th>Allele burden ≥50% N=200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median, range)</td>
<td>66.0 (33-85) years</td>
<td>67.0 (23-87) years</td>
<td>67.0 (27-85) years</td>
</tr>
<tr>
<td>Platelets (median, µL)</td>
<td>97,000 (41-181,000) µL</td>
<td>75,000 (41-180,000) µL</td>
<td>127,000 (55-315,000) µL</td>
</tr>
<tr>
<td>Hemoglobin <10g/dL (%)</td>
<td>61%</td>
<td>53%</td>
<td>35%</td>
</tr>
<tr>
<td>Platelets <50,000/µL (%)</td>
<td>23%</td>
<td>22%</td>
<td>10%</td>
</tr>
<tr>
<td>Spleen volume (median)</td>
<td>10.0 cm</td>
<td>19.5 cm</td>
<td>15.0 cm</td>
</tr>
<tr>
<td>Primary myelofibrosis (%)</td>
<td>76%</td>
<td>80%</td>
<td>37%</td>
</tr>
</tbody>
</table>

Spleen volume response observed in pacritinib-treated patients regardless of JAK2 allele burden

- Pacritinib was associated with similar SVR response at all levels of allele burden as shown in Figure 1.
- No SVR response was observed for patients treated with BAT (including ruxolitinib) who had low JAK2 allele burden or JAK2 V617F-negative disease.
- Pacritinib was associated with higher rates of SVR response than BAT among patients with low JAK2 allele burden (<50%):
 - Allele burden >0 to 25% response rate for pacritinib vs. BAT = 21% vs. 0% (P<0.001)
 - Allele burden >25 to 50% response rate for pacritinib vs. BAT = 51% vs. 0% (P<0.001)
 - Allele burden >50% response rate for pacritinib vs. BAT = 67% vs. 0% (P<0.001)

Figure 1: Percent Change in Spleen Volume (Week 24) on Pacritinib vs. BAT Stratified by JAK2 Mutation Status and Allele Burden Quartile

CONCLUSIONS

- Pacritinib demonstrated clinical efficacy regardless of JAK2 allele burden or JAK2 mutation status.
- No SVR response was observed for patients treated with best available therapy (including ruxolitinib) who had low JAK2 allele burden or JAK2-negative disease.
- Patients with low JAK2 allele burden and JAK2-negative disease may have non-JAK2 mediated disease. Pacritinib’s efficacy in this population may be mediated by a JAK2-independent mechanism (e.g., through inhibition of IRAK1).

REFERENCES

POSTER INFORMATION

This poster was presented at the 2019 American Society of Hematology Annual Meeting.