

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Pacritinib Is a Potent ACVR1 Inhibitor with Significant Anemia Benefit in Patients with Myelofibrosis

Session 634. Myeloproliferative Syndromes: Clinical and Epidemiological: Towards Personalized Medicine in Myeloproliferative Neoplasms and Mastocytosis: New and Repurposed Drugs for Unmet Clinical Needs Dec 11, 2022, #628

Authors

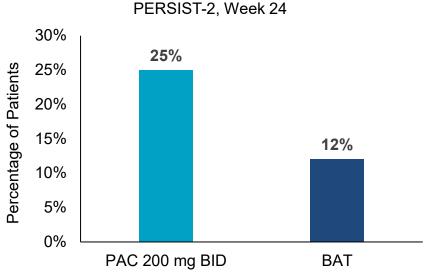
Stephen T. Oh,¹ Ruben A. Mesa,² Claire N. Harrison,³ Prithviraj Bose,⁴ Aaron T. Gerds,⁵ Mark L. Heaney,^{6†} Vikas Gupta,⁷ Bart L. Scott,⁸ Jean-Jacques Kiladjian,⁹ Alessandro Lucchesi,¹⁰ Tim Kong,¹ Sarah A. Buckley,¹¹ Shanthakumar Tyavanagimatt,¹¹ Karisse Roman-Torres,¹¹ John Mascarenhas,¹² Srdan Verstovsek⁴

¹Washington University School of Medicine, St. Louis, MO; ²UT Health San Antonio Cancer Center, San Antonio, TX; ³Guy's and St Thomas' NHS Trust, London, United Kingdom; ⁴The University of Texas MD Anderson Cancer Center, Houston, TX; ⁵Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; ⁶Columbia University Medical Center, New York, NY; ⁷Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; ⁸Fred Hutchinson Cancer Research Center, Seattle, WA; ⁹Hôpital Saint- Louis, Université de Paris, Paris, France; ¹⁰IRCCS Istituto Romagnolo per Io Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy;¹¹CTI BioPharma, Seattle, WA; ¹²Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY

[†] Deceased

Anemia in Myelofibrosis

- Present in ~40% of MF patients at diagnosis¹
- Develops in almost all MF patients over the course of disease¹
- Associated with poor prognosis²
- Multifactorial³
 - Disease-related inflammation
 - Marrow fibrosis
 - Splenic sequestration
 - Drug-induced
- Other approved JAK2 inhibitors may exacerbate anemia within weeks of first dose^{4,5}

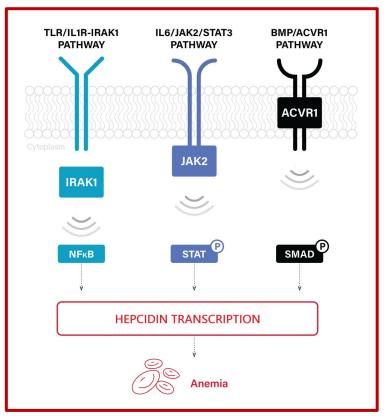

JAK=Janus associated kinase; MF=myelofibrosis.

[1] Tefferi A, et al. Mayo Clin Proc. 2012;87(1):25-33. [2] Nicolosi M, et al. Leukemia. 2018;32:1254-58 [3] Naymagon L, Mascarenhas J. Hemasphere. 2017;1(1):e1. [4] Verstovsek S, et al. Haematologica. 2015;100(4). [5] Pardanani A, et al. JAMA Oncology. 2015;1(5):643-51.

Pacritinib in Cytopenic Myelofibrosis

- Approved in patients with MF who have a platelet count <50x10⁹/L
- Able to be administered at the full approved dose (200 mg BID) regardless of cytopenias¹⁻³
- Demonstrated hemoglobin improvement in randomized PERSIST-2 study²
- The mechanism behind / extent of anemia benefit has not been fully described

Clinical Improvement in Hemoglobin²



IWG criteria: among patients with baseline hemoglobin <10 g/dL, increase of \geq 2.0 g/dL or RBC transfusion independence for \geq 8 weeks

BAT=best available therapy; BID=twice daily; IWG= ; MF=myelofibrosis; RBC=red blood cell. [1] Mesa R, et al. Lancet Oncology; 2017. [2] Mascarenhas J, et al. JAMA Oncol. 2018;4(5):652-659. [3] Gerds A, et al. Blood Advances. 2020;4(22):5825-35.

Aims

- Aim 1: assess pacritinib's *in vitro* potency against ACVR1 and its ability to reduce hepcidin
 - ACVR1 has been implicated in anemia of inflammation in patients with myelofibrosis^{1,2}
- Aim 2: describe the impact of pacritinib 200 mg BID on RBC transfusion independence in the Phase 3 PERSIST-2 study

ACVR1= Activin A receptor type 1; BID=twice daily; JAK2=Janus associated kinase 2; IL6=interleukin-6; IRAK=interleukin receptor-associated kinase; RBC=red blood cell. [1] Oh ST, et al. *Blood Advances*. 2020. [2] Asshoff M, et al. *Blood*. 2017.

Methods: Inhibition of ACVR1 in vitro

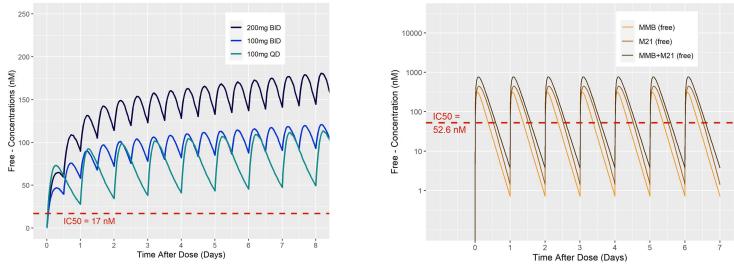
- Potency of JAK inhibitors (PAC, MMB, RUX, FED) against ACVR1 (ALK2) assessed by in vitro HotSpot assay (Reaction Biology Corp)
 - IC₅₀ calculated using 3-fold serial dilutions starting at 10 μM
 - Potency = ratio of clinical C_{max}: IC₅₀
- Compared IC₅₀ to clinical drug concentration
 - Modeled concentration-time curves of free drug using R (v 4.1.1). For momelotinib, mean time-concentration data captured from medical literature and digitized, including the active M21 metabolite¹.
- Immunoblot of pSMAD (downstream of ACVR1) and qRT-PCR of hepcidin in HepG2 human liver cancer cells stimulated with BMP6 in the presence of JAK inhibitors (PAC, MMB, RUX, FED).

ACVR1= Activin A receptor type 1; BMP6=bone morphogenetic protein 6; C_{max}=highest concentration of a drug in the blood; FED=fedratinib; IC₅₀=half maximal inhibitory concentration; MMB=momelotinib; PAC=pacritinib; pSMAD=phospho-SMAD (downstream of ACVR1); RUX=ruxolitinib. [1] Zheng et al. *Drug Meta Dispos*; 2018.

Pacritinib Is a Potent ACVR1 Inhibitor

• Pacritinib is ~4x more potent than momelotinib against ACVR1

	+ Control LDN 193189ª	PAC C _{max} 213 nM	MMB C _{max} 168 nM	FED C _{max} 275 nM	RUX C _{max} 47 nM	Legend
Replicate 1 ACVR1 IC ₅₀ (nM)	20.4	22.6	70.2	312.0	>1000	Higher potency
Replicate 2 ACVR1 IC ₅₀ (nM)	32.4	10.8	34.9	235.0	>1000	
Mean ACVR1 IC ₅₀ (nM)	26.4	16.7	52.6	273.5	>1000	
Potency ^b (C _{max} :IC ₅₀)	N/A	12.7	3.2	1.0	<0.01	Lower potency

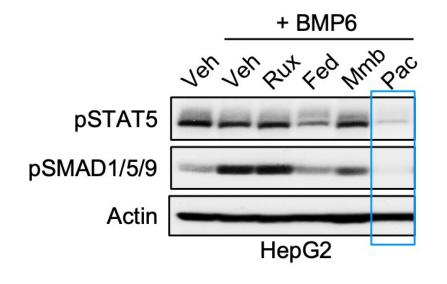

^aLDN 193189 is an ACVR1 inhibitor.

^bC_{max} is the maximum unbound plasma concentration at the clinical recommended dose in humans.

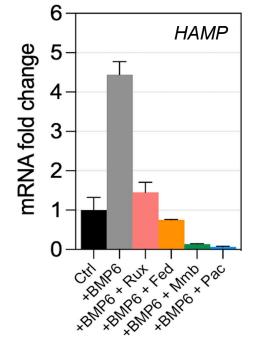
ACVR1= Activin A receptor type 1; FED=fedratinib; IC₅₀=half maximal inhibitory concentration; MOM=momelotinib; PAC=pacritinib; RUX=ruxolitinib.

Pacritinib Is a Potent ACVR1 Inhibitor

- Pacritinib concentration exceeds ACVR1 IC₅₀ 100% of the time at all dose levels
- Momelotinib concentration exceeds ACVR1 IC₅₀ 55% of the time only (accounting for both momelotinib and its metabolite [M21])



Pacritinib Concentration-Time Curve Momelotinib Concentration-Time Curve


ACVR1= Activin A receptor type 1; BID=twice daily; IC₅₀=half maximal inhibitory concentration; MMB=momelotinib; QD=once daily.

Pacritinib Decreases Hepcidin Expression in vitro

 Pacritinib decreases SMAD phosphorylation (downstream of ACVR1)

 Pacritinib decreases HAMP (hepcidin) mRNA levels

Concentrations BMP6: 10 ng/mL JAK inhibitor: 1uM

BMP6=bone morphogenic protein 6; Ctrl=control; Fed=Fedratinib; Mmb=momelotinib; Pac=pacritinib; Rux=ruxolitinib; Veh=vehicle.

Methods: Analysis of Transfusion Independence

 Evaluated pacritinib 200 mg BID (approved dose) and best available therapy (BAT) on PERSIST-2 study¹

PERSIST-2 Population	Randomization	Pacritinib 200 mg BID	Co-Primary Endpoints
Myelofibrosis	• 1:1:1		Spleen volume response
 Platelets ≤100 x 10⁹/L 	• N=311	Pacritinib 400 mg QD	Total symptom score
Prior JAK inhibitor			response
therapy allowed		Best Available Therapy	
		Booth Wallable Therapy	

- Among patients who were not TI at baseline and who were randomized ≥12 weeks prior to study termination, what percentage became TI on study through week 24?
 - TI (Gale criteria): no RBC transfusion over 12 weeks
 - TI (SIMPLIFY criteria): no RBC transfusion & no hemoglobin <8 g/dL over 12 weeks

BID=twice daily; QD-once daily; RBC=red blood cell; TI=transfusion independence. [1] Mascarenhas et al. *JAMA Oncology*. 2018.

Baseline Patient Characteristics

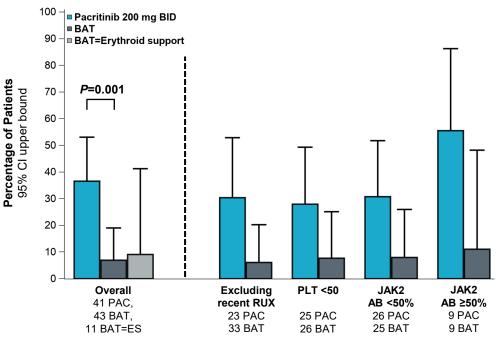
PERSIST-2, Non-TI patients (Gale criteria)

Characteristic	Pacritinib 200 mg BID N=41	BAT N=43
Age in years, median	67	70
Primary myelofibrosis	83%	63%
Time since diagnosis in years, median	2.5	2.9
Prior JAK2 inhibitor	56%	58%
Platelet count x10 ⁹ /L, median	41	43
Hemoglobin in g/dL, median	8.7	8.6
RBC transfusions / month (prior 90 days), median	1.5	1.9
JAK2 ^{V617F} mutation, n Allele burden <50%	35 74%	34 74%

BAT composition

- 42% ruxolitinib
 - Median 5 mg QD
- 26% erythroid support
 - Danazol, ESAs, IMiDs, steroids
- 19% watch and wait only

BAT=best available therapy; ESA=erythropoiesis-stimulating agents; IMiDs=immunomodulatory drugs; JAK=Janus associated kinase; QD=once daily; RBC=red blood cell; TI-transfusion independence.


More Pacritinib Patients Achieved TI (Gale)

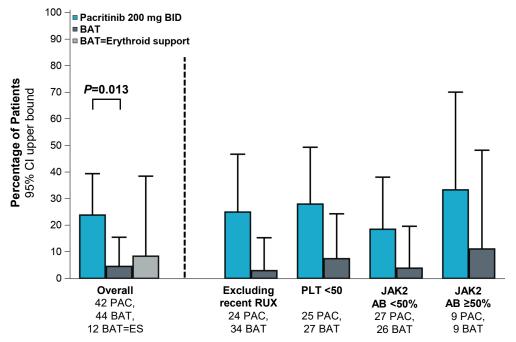
TI Conversion Rate

Pacritinib N=41	BAT N=43	P-value
37%	7%	0.001

- TI conversion better on pacritinib than BAT, including patients receiving erythroid support agents as BAT
 - Erythroid support agents were prohibited on the pacritinib arm

Rate of TI (Gale criteria) through Week 24

AB=allele burden; BAT=best available therapy; ES=erythroid support; JAK=Janus associated kinase; PAC=pacritinib; PLT=platelets; recent RUX=no ruxolitinib in prior 30 days; TI=transfusion independence.

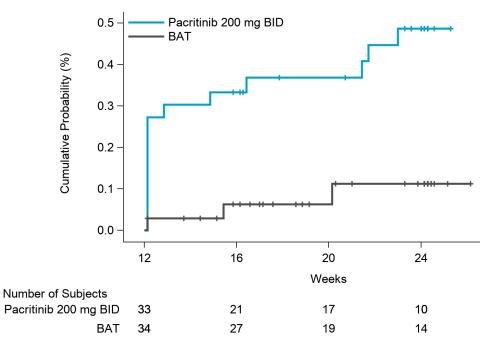

More Pacritinib Patients Achieved TI (SIMPLIFY)

TI Conversion Rate

Pacritinib N=42	BAT N=44	P-value
24%	5%	0.013

 Similar results based on SIMPLIFY criteria for TI

Rate of TI (SIMPLIFY criteria) through Week 24



AB=allele burden; BAT=best available therapy; ES=erythroid support; JAK=Janus associated kinase; PAC=pacritinib; PLT=platelets; recent RUX=no ruxolitinib in prior 30 days; TI=transfusion independence.

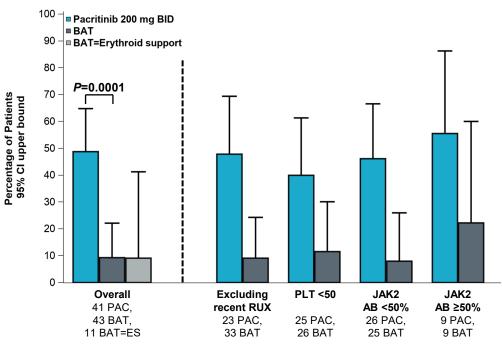
TI Conversion Can Occur Late in Treatment

- Many responses occurred early during treatment
- Some responses occurred after several months on treatment

Cumulative Incidence of TI (Gale criteria)

BAT=best available therapy; BID=twice daily; TI=transfusion independence.

More PAC Patients Had ≥50% Transfusion Reduction

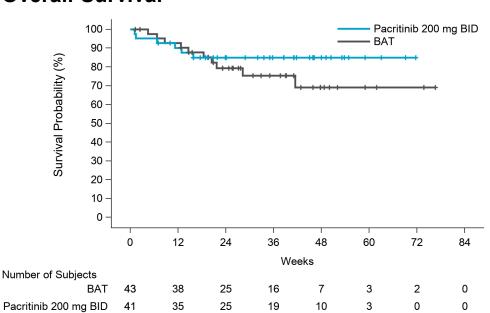

Transfusion Reduction

Pacritinib N=41	BAT N=43	<i>P</i> -value
49%	9%	0.0001

Clinically significant reduction in transfusion burden more common on pacritinib

Rate of ≥50% Transfusion Reduction

Over 12-week interval through week 24

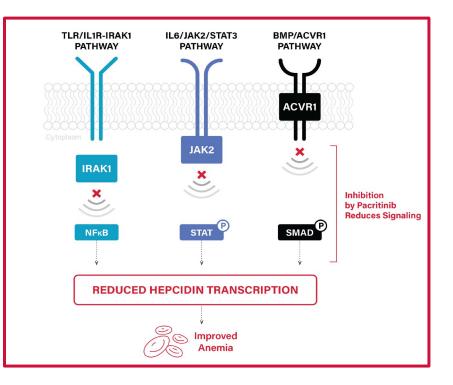


AB=allele burden; BAT=best available therapy; ES=erythroid support; JAK=Janus associated kinase; PAC=pacritinib; PLT=platelets; recent RUX= no ruxolitinib in prior 30 days; TI=transfusion independence.

Survival Trend on Pacritinib

- Among patients who were not transfusion independent at baseline:
 - HR = 0.61 (95% CI: 0.22-1.68)

- After adjusting for baseline transfusion rate:
 - HR_{adj} = 0.64 (95% CI: 0.23-1.76)


Overall Survival

BAT=best available therapy; BID=twice daily; CI=confidence interval; HR=hazard ratio; HR_{adj}=adjusted HR.

Hypothesized Mechanism of Anemia Benefit

 Potent, 24-hour inhibition of ACVR1 may function in conjunction with IRAK1 and JAK2 inhibition to reduce levels of hepcidin

Hepcidin reduction ameliorates anemia of inflammation that occurs in myelofibrosis

ACVR1= Activin A receptor type 1; JAK2=Janus associated kinase 2; IL6=interleukin-6; IRAK=interleukin receptor-associated kinase.

Conclusions

- Pacritinib is a potent ACVR1 inhibitor (~4x greater potency than momelotinib)
- Pacritinib is the only known JAK2 inhibitor that provides full-day inhibition of ACVR1 at all doses
- Pacritinib reduces hepcidin levels in vitro
- Pacritinib therapy results in transfusion independence in patients with myelofibrosis who require red blood cell transfusions
- Due to its unique mechanism of action as a JAK2/IRAK1/ACVR1 inhibitor, pacritinib may provide a therapeutic option that affords spleen, symptom, and anemia benefit for patients with myelofibrosis

